skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Herrmann, Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Phenological synchrony enables species to occur when conditions are optimal for survival. While phenological synchrony between butterflies and their host plants has been extensively documented, the importance of phenology in maintaining interspecies interactions, such as mimicry, is less understood. Mimicry occurs when a species (i.e. the mimic) evolves a phenotypic resemblance to an unpalatable species (i.e. the model), resulting in protection against predation for the mimic. Theory predicts that in Batesian mimicry systems, models should appear seasonally before their mimics to give predators sufficient time to learn, recognize, and avoid their aposematic signal (i.e. model-first hypothesis). Here, we use citizen science data from iNaturalist to test these long-standing predictions. To understand how mimicry influences the evolution of different phenological strategies, we estimate onset phenology in two systems: the defended model species Battus philenor and its classic Batesian mimic Limenitis arthemis astyanax, and the more complex system consisting of Mullerian co-mimics Danaus plexippus and Limenitis archippus. Our results support the model-first hypothesis and demonstrate that unpalatable models appear significantly before their mimics across large geographical scales. This research highlights a new avenue for utilizing large-scale citizen science datasets to address long-standing questions about how phenology impacts complex ecological interactions. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Our ability to produce human-scale biomanufactured organs is limited by inadequate vascularization and perfusion. For arbitrarily complex geometries, designing and printing vasculature capable of adequate perfusion poses a major hurdle. We introduce a model-driven design platform that demonstrates rapid synthetic vascular model generation alongside multifidelity computational fluid dynamics simulations and three-dimensional bioprinting. Key algorithmic advances accelerate vascular generation 230-fold and enable application to arbitrarily complex shapes. We demonstrate that organ-scale vascular network models can be generated and used to computationally vascularize >200 engineered and anatomic models. Synthetic vascular perfusion improves cell viability in fabricated living-tissue constructs. This platform enables the rapid, scalable vascular model generation and fluid physics analysis for biomanufactured tissues that are necessary for future scale-up and production. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  3. Batesian mimicry occurs when palatable mimics gain protection from predators by evolving a phenotypic resemblance to an aposematic model species. While common in nature, the mechanisms maintaining mimicry are not fully understood. Patterns of temporal synchrony (i.e. temporal co-occurrence) and model first occurrence have been observed in several mimicry systems, but the hypothesis that predator foraging decisions can drive the evolution of prey phenology has not been experimentally tested. Here, using phenotypically accurate butterfly replicas, we measured predation rates on the chemically defended model speciesBattus philenorand its imperfect Batesian mimicLimenitis arthemis astyanaxunder four different phenological conditions to understand the importance of temporal synchrony and model first occurrence in mimicry complexes. We predicted that protection for mimics increases when predators learn to avoid the models' aposematic signal right before encountering the mimic, and that learned avoidance breaks down over time in the model’s absence. Surprisingly, we found that asynchronous model first occurrence, even on short time scales, did not provide increased protection for mimics. Mimics were only protected under conditions of temporal synchrony, suggesting that predators rely on current information, not previously learned information, when making foraging decisions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026